Question Sheet 2, Limits II.

Limits not existing

In the next two questions we look at examples of functions that do not have a limit at a point.

1. i) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

Prove that the limit $\lim _{x \rightarrow 0} f(x)$ does not exist.
Hint use proof by contradiction and the fact that in any interval we can find a rational number and an irrational number.
ii) Prove that for all $a \in \mathbb{R}$ the $\operatorname{limit} \lim _{x \rightarrow a} f(x)$ does not exist.
2. i) Show by means of an example that $\lim _{x \rightarrow a}\{f(x)+g(x)\}$ may exist even though neither $\lim _{x \rightarrow a} f(x)$ or $\lim _{x \rightarrow a} g(x)$ exist.
ii) Do the same for $\lim _{x \rightarrow a} f(x) g(x)$.

Hint: Construct f and g from a function in the previous question or a similar one seen in the notes.

One-sided limits

In the next two questions we examine a limit at a point by examining the two one-sided limits at that point.
3. Let

$$
F(x)=\frac{x^{2}-1}{|x-1|}
$$

i) For what x is this well-defined?

Hint Recall that $|y|=y$ if $y \geq 0$ and $=-y$ if $y<0$.
ii) Find $\lim _{x \rightarrow 1^{+}} F(x)$
iii) Find $\lim _{x \rightarrow 1^{-}} F(x)$.
iv) Does $\lim _{x \rightarrow 1} F(x)$ exist?
v) Sketch the graph of $F(x), x \in \mathbb{R}$.
4. Sketch the graph of

$$
f(x)= \begin{cases}8-x^{2}, & x<2 \\ 3, & x=2 \\ x^{2}-2 & x>2\end{cases}
$$

Use the $\varepsilon-\delta$ definition to evaluate the following one-sided limits.
i) $\lim _{x \rightarrow 2-} f(x) \quad$ and
ii) $\lim _{x \rightarrow 2+} f(x)$.

Does $\lim _{x \rightarrow 2} f(x)$ exist?

Limits at Infinity

In the next five questions we look at limits as $x \rightarrow+\infty$ and $x \rightarrow-\infty$.
5. Verify the $\varepsilon-X$ definition of

$$
\lim _{x \rightarrow+\infty} \frac{3 x+3}{x-2}=3 .
$$

6. Verify the $\varepsilon-X$ definition of

$$
\lim _{x \rightarrow-\infty} \frac{2 x-2}{x+2}=2
$$

7. Find the value of

$$
\lim _{x \rightarrow+\infty} \frac{2-x^{2}}{x^{2}+2}
$$

and show your value satisfies the $\varepsilon-X$ definition.
8. Find the value of

$$
\lim _{x \rightarrow-\infty} \frac{3 x+3}{x-2}
$$

and show your value satisfies the $\varepsilon-X$ definition.

Extra questions for practice

9 . Verify the $\varepsilon-X$ definition of

$$
\lim _{x \rightarrow+\infty} \frac{-2-x^{2}}{x^{2}-2}=-1
$$

10. Find the value of

$$
\lim _{x \rightarrow-\infty} \frac{-2-x^{2}}{x^{2}-2}
$$

and show your value satisfies the $\varepsilon-X$ definition.

